VIRGIN ANASAZI ARCHITECTURE: Toward A Broader Perspective

Richard K. Talbot, Office of Public Archaeology, Brigham Young University, 105 Allen Hall, Provo, Utah 84602

ABSTRACT

A review of Virgin, Kayenta, and Mesa Verde Anasazi architecture suggests temporal and spatial variability in structural shape and the occurrence of certain internal features. This variability indicates that Virgin area architecture, although at times slow to develop, is generally much more dynamic internally than previously thought. It also suggests an adherence to the broad patterns of regional architectural change. Temporally variable economic and social requirements or pressures probably had the greatest impact on Virgin architecture. Placing Virgin Anasazi architecture in a regional context provides a better perspective on its origins and development.

INTRODUCTION

No other characteristic, with the exception of ceramics, has been presented as more representative of the Virgin Anasazi than architecture. Yet, for the most part, a convincing distinctiveness of Virgin architecture continues relatively undefined in the current literature. In fact, the distinguishing characteristic of Virgin architecture most researchers are able to agree upon is its complacency. Definitions of and reasons for this complacency are less clear.

The premise of this paper is that in order to define Virgin architecture, one must first understand the mechanisms behind its development. The primary focus is on temporal and spatial variability in architecture among the major Northern Anasazi groups—the Virgin, Kayenta, and Mesa Verde—as evidenced by general structural form or shape and, to a lesser degree, certain internal features. The paper attempts to demonstrate that Virgin Anasazi architecture is not nearly as complacent as thought to be, but instead conforms to the dynamic nature of Southwestern architecture in general. It argues that Virgin Anasazi architecture developed from a complexity of influences, most notably economic and social change and continuity, through time and space.

BACKGROUND

Regional Studies

Architectural studies have been an integral part of Southwestern archaeology almost since its inception, mostly in the form of either detailed site descriptions, or more complex discussions of feature development or formal transitions (i.e., Morris 1939; Brew 1946; Bullard 1962; Gillespie 1975; Lipe and Breternitz 1980; Hewitt et al. 1983; Kane 1986; Gilman 1987; Wilshusen 1988a). Beginning in the 1950s and continuing to the present, some researchers have also taken a hard look at functional determiners in Anasazi architecture (i.e., Smith 1952; Hill 1968, 1970; Sullivan 1974; Jorgenson 1975; Gillespie 1976; Clemen 1976; McGuire and Schiffer 1983; Bagley-Baumgartner 1984; Ciolek-Torrello 1985; Wilshusen 1988b). Each of these researchers relied upon formal attributes of architecture at least to some degree, while many went even further, utilizing artifact inventory- and/or activity-oriented characteristics as well in deriving functional interpretation.

One work in particular has influenced many archaeologists' views on Anasazi architecture. Bullard (1962) went to great lengths in comparing and contrasting formal pit house architectural features in specific areas and sites, from pit house size to numerous types and sizes of subfloor pits. His analysis provided an insight into regional styles and attributes on a scale that would be difficult to match today, given the continually expanding data base. On the other hand, this increasing data set provides a wealth of information not available to
other characteristics (e.g., size, depth, wall or roof construction, etc.) or internal features (e.g., subfloor pits, vent shafts, hearths, etc.) likewise can illustrate architectural dynamics quite as well. Unfortunately, inherent complexities in site or feature descriptions and interpretations make some of these features more difficult to address at this level of analysis. A few of these, however, will be discussed briefly.

Pit Houses

Early pit houses in the Northern Anasazi area are basically circular in plan (Figure 2). Circular structures are found until ca. A.D. 750 in the Central Mesa Verde area. Distinctly D-shaped pit houses, however, appear ca. A.D. 600, and last until A.D. 800. Around A.D. 700 (possibly earlier) a subrectangular pit house shape also appears and continues in use for at least 200 years. The result of this change is an intriguing 200 year span (A.D. 600-800) where change from circular to D-shape to subrectangular shapes occurs. The A.D. 700-750 period in particular demonstrates extreme diversity. Some circular structures present during the succeeding A.D. 900-1000 period are identified by Kane (1986) as more closely related to kivas. Circular pit houses reappear between A.D. 1000-1200; however, these are likely seasonal field houses, having been constructed with little effort (Kane 1986).

The changes occurring in the Central Mesa Verde area are reflected to varying degrees in other areas. The Western Mesa Verde area has circular pit houses to A.D. 800, D-shaped between A.D. 700-900 and subrectangular between A.D. 750-950. Possible field houses similar to those in the Central Mesa Verde appear at least between A.D. 1000 and 1100. The Kayenta area saw the continued use of circular pit houses until A.D. 1000. Subrectangular structures appear ca. A.D. 900.

The Upper Virgin area shows much the same transitional pattern as other areas, with circular structures occurring at least until A.D. 1100,
Figure 5. Temporal variation in Kiva shape by region.

Figure 6. Temporal variation of cists and roomblocks by region.
the circular-to-subrectangular ends to a bar-bell or haton shape. Often a group of habitation rooms are found in a linear arrangement, separate from the storage units. The equally distinctive Kayenta mealng room is typically set in an area to the northeast of the kiva/pit house, in front of or next to the roomblock.

Small to medium-sized Upper Virgin roomblocks tend to follow the general pattern of the Kayenta area, with jaccel or masonry habitation structures often attached to the end(s) of the storage structure alignment (Figure 8—top). Many sites incorporate the habitation rooms into the actual roomblock alignment interior (see Figure 8—bottom). Lower Virgin sites are similarly constructed, with jaccel wings, end and/or interior roomblock habitation rooms. Alignments of habitation rooms only are also known for later (A.D. 1000s-1100s) occupations.

Internal Features

Although structural shape is one of the best demonstrators of temporal and spatial architectural variability, other characteristics or features can also provide valuable comparative data. Unlike structural shape, however, comparisons of these features can be rather challenging, especially when such features are present in some structures, but not in others. Likewise environmental constraints such as ground conditions and materials availability, and interpretational variability by area researchers can mask the true nature of these features or characteristics. As a result, beginning and/or ending use dates of many of these features are still somewhat obscure, as are reasons for their apparent randomness in occurrence. Still, general temporal and spatial variability was noted in some of these features as this analysis progressed, and it was felt they could also provide important comparative data. To this end, observations on a few of these are made below.

Entrance/Ventilation

One of the most obvious features associated with Northern Anasazi subterranean structures is the entrance and/or ventilation system. Orientation is similar throughout the region, being primarily to the south or southeast. Antechambers persist until at least A.D. 700 in the central Kayenta area, A.D. 775 in the Central Mesa Verde, A.D. 850-900 in the Western Mesa Verde, and A.D. 950 in the Upper Virgin. In the latter area, however, most antechambers are recognizably distinct from those to the east, being little more than small recesses (see Figure 3—top and Figure 4—top).

Ventilator tunnels appear early in both the Western Mesa Verde and Kayenta areas around A.D. 600, and by A.D. 700 in the Central Mesa Verde. In the Upper Virgin literature vents are rare, although Walling and Thompson (1988:23) indicate they appear "frequently" in pit structures. Kivas also contain ventilator tunnels. Freestanding deflectors, common in both the Western and Central Mesa Verde areas, are somewhat more rare in the Kayenta area, and almost nonexistent in the Virgin area.

In contrast to the typical roof ladder entrance portrayed as common for Northern Anasazi sites, the Kayenta area began utilizing ramps in pit structures between A.D. 600-700. Upper Virgin pit houses, on the other hand, occasionally contain a step-slab, depression, or small recess against one wall, suggestive of a step entrance. Evidence is lacking from the Lower Virgin area for both ventilation and entrance systems.

Benches

The use of full, three-quarter, half or even smaller benches around subterranean structures is variable for the Northern Anasazi area. In the Central Mesa Verde, benches are common in pit houses between A.D. 600-800, but are less common after that. By contrast, benches are rare in both Western Mesa Verde and Kayenta pit houses. The Upper Virgin area use of benches was common, although certainly not prevalent, beginning at least in the A.D. 600s, and likely continuing until abandonment (see Figure 3—bottom and Figure 4—top). Some Lower Virgin pit houses also apparently contained benches, at least early on (e.g., Shutler 1961). The use of benches in kivas is much
example, slab-lining in a structure was often necessary to shore up slumping walls, while masonry construction may have been more practical for the deepest structures. Still, temporal and spatial variability are evident in the use of these construction methods.

Limited full or partial slab-lining (especially in antechambers), may appear as early as A.D. 650–700 in the Western Mesa Verde area, yet not until A.D. 850–900 in the Central Mesa Verde, and then only occasionally. In kivas the slab-lining may front the bench, or the wall above the bench. Slab-lining is occasionally found in Kayenta pit houses (examples in the study area date to ca. A.D. 850–900, although they may occur earlier), but becomes more common when combined with masonry construction in kivas. Slab-lined (or occasionally boulder-lined) pit houses in the Upper Virgin area are common beginning ca. A.D. 600–700, although in many cases the slab-lining is partial only (see Figures 3 and 4). Full or partial slab- or boulder-lined pit houses are rare but still present in the Lower Virgin, apparently contemporaneous with those in the Upper Virgin area.

The use of formal masonry in subterranean structures appears almost exclusively limited to kivas, with its introduction corresponding to the appearance of kivas in each of the Northern Anasazi areas discussed above. The only exceptions are a few pit houses from the Dolores area dating between A.D. 840–900. Since the dating coincides closely with the appearance of kivas, it is possible this initial use of masonry reflects the transition from pit house to kiva that is happening at this time.

DISCUSSION

This analysis has focused on demonstrating how spatial and temporal variability are reflected in Northern Anasazi architecture, with structural shape a prime example of that variability. The Virgin area follows, for the most part, the same patterns of architectural development as are present in the Kayenta and Mesa Verde areas. This is not, or at least should not be news to anyone familiar with the Virgin area (see, for example, Aikens 1966), and does not take away from the recognition of at least differing degrees of Virgin Anasazi "in situ development" (Dalley and McFadden 1988:277). Yet Virgin area research, including architecture, is increasingly presented from a decidedly introverted, isolationistic perspective. This seems, as much as anything, to be part of a defensive posture against characterizations of the Virgin Anasazi as a subgroup of the Kayenta Anasazi. The evidence presented here suggests that, just as certain architectural characteristics are indeed sufficiently distinct from those of the Kayenta (or Mesa Verde) area to support Virgin area taxonomic equivalency arguments, other characteristics directly or indirectly reflect significant outside influence. Therefore, while Virgin architecture can and should be studied internally, its regional context deserves as much if not more attention.

Perhaps the most striking aspect of this analysis is the evidence for temporal disparity in architectural change between the Northern Anasazi groups. The complacency of Virgin Anasazi architecture referred to by some researchers (i.e., Walling and Thompson 1988; Dalley and McFadden 1988) is likely a manifestation of this temporal disparity. Indeed, certain major architectural forms (e.g., kivas, D-shaped or subrectangular pit houses, surface roomblock construction) occur as much as 150–300 years earlier in the Mesa Verde area, and 50–150 years earlier in the Kayenta area. Other characteristics or internal features likewise seem temporally variable in their appearance in and across the Virgin area.

If a complacency exists within Upper Virgin architecture, it occurs prior to A.D. 900. After that time, surface roomblocks, then variation in pit house shape, and finally kivas appear. These all represent major changes which together reflect a dynamic period of architectural flux. Changes prior to A.D. 900 are less dramatic, but still evident. Pit houses, for example, display significant internal variability. Vaults, warming pits and likely numerous other internal features were often incorporated into pit house construction during this early period, while randomly placed cists became grouped or aligned in arcs. At the SR-9 sites (Billat 1990) pit house size, construction, and
Consequently, early simpler architectural forms were probably acceptable for a much longer period of time. The change in pit house shape, which Hunter-Anderson (1977) correlates with increased sedentism, occurs well after such changes in other Northern Anasazi areas. The construction of large pueblos, thought to be associated with increased subsistence intensification and demographic pressures (Gilman 1987), occur later and at much reduced levels in the Virgin area than they do to the east. Even the kiva, a primary focus of Anasazi social integration (Hegmon 1989), appears only late, and then somewhat rarely, in the Upper Virgin, and apparently not at all in the Lower Virgin. In sum, Virgin Anasazi architecture is in large part a product of the economic and social requirements of, and pressures on, the Virgin peoples, which in turn appear generally much less intense than in the rest of the Northern Anasazi area.

Although architecture reflects the gradual pace of economic and social change in the Virgin area, it cannot explain why these changes did not occur more rapidly. Still, more detailed analyses of Virgin architecture and its influencing factors can provide greater insights into Virgin Anasazi cultural development. At the very least, a change in perceptions of, and approaches to, Virgin architecture is needed. It is hoped that, in the process of defining area culture history and chronology, Virgin architecture does not become entrenched in normative characterizations such as Bullard's (1962:180) southwestern Utah "standard and specialized pithouse type." Rather than repeating generalizations about, or establishing set definitions of, Virgin architecture, we need to address directly the evidence of architectural change and variability through time and space, with an eye toward its origins and influences. Architectural studies also need to be better integrated into settlement/subsistence, paleodemographic, regional interaction, and social organization analyses.

Perhaps, then, what this paper is really crying out for is the need to not only recognize, but to begin treating architecture as a dynamic part of Virgin Anasazi life. The data base is growing rapidly (although some important past research data are still unpublished, and likely lie gathering dust on forgotten shelves), and before too long significant gaps in area culture history may be filled in. Architecture, as a prime distinguishing characteristic of the Virgin Anasazi, can and needs to be at the forefront of future research.

ACKNOWLEDGMENTS

This analysis was carried out as part of the recently completed SR-9 project in Washington County, Utah. Appreciation is extended to the UDOT, and to UDOT archaeologist Kenneth Wintch, who supported the project. My special thanks to Lorna Bialat, project director, who showed great patience through numerous revisions. Charmaine Thompson and Jim Allison helped guide the paper through its inception and early stages, while Gardiner Dailey, Doug McFadden, Joel Janetski, and Jim Wilde reviewed the first draft. All made valuable and often penetrating comments.

REFERENCES CITED

Agenbroad, Larry D., William E. Davis, and E. Steve Cassells

Aikens, C. Melvin

Allison, James R.

Ambler, J. Richard, and Alan P. Olson
Longmont, Colorado and Bluff, Utah.
Submitted to Energy Fuels Nuclear, Inc.

VIRGIN ANASAZI ARCHITECTURE

and Western Sagehen Flats Area. Bureau of Reclamation, Denver.

Lindsay, La Mar

Lindsay, Alexander J., Jr., J. Richard Ambler, Mary Ann Stein, and Phillip M. Hobler

Lipe, William D., and Cory D. Breternitz

Lyneis, Margaret M.

Lyneis, Margaret M., Mary K. Rusco, and Keith Myhrer

Martin, Paul S.

Martin, Paul S., and Fred Plog

McGuire, David J.

McGuire, Randall H., and Michael B. Schiffer

Miller, Blaine A.
1976 A Study of a Prudden Unit Site (42Sa971–N) in Montezuma Canyon, San Juan County, Utah. Unpublished Master’s thesis, Department of Anthropology and Archaeology, Brigham Young University, Provo.

Miller, Donald E.
1974 A Synthesis of Excavations at Site 42Sa863, Three Kiva Pueblo, Montezuma Canyon, San Juan County, Utah. Unpublished Master’s thesis, Department of Anthropology and Archaeology, Brigham Young University, Provo.

Morris, Earl L.

Mueller, James W., Gregory J. Staley, Gayle G. Harrison, Ronald W. Ralph, Carla A. Sartwell, and Ronald P. Gauthier

Myhrer, Keith
Sullivan, Alan P.

Swannack, Jervis D., Jr.

Talbot, Richard, Allison Bingham, and Asa S. Nielsen
1982 *Archaeological Investigations at 42Sa 9937 (Aromatic Village in San Juan County, Utah)*. Brigham Young University, Museum of Peoples and Cultures, Cultural Resource Management Services. Submitted to City of Blanding, Utah.

Thompson, Richard A.
1980 The Little Creek Project: Excavation at 42Ws 969: The Tunnel Site. Ms. on file, Southern Utah State University, Cedar City.

Thompson, Richard A., and Georgia Beth Thompson
1983 *Prehistory and Environment of Southwest Utah*. Interscience, Cedar City.

Thompson, Charmaine, James R. Allison, Shane A. Baker, Joel C. Janetski, Byron Loosle, and James D. Wilde

Wade, William D.

Walling, Barbara A., and Richard A. Thompson

Walling, Barbara, Richard Thompson, Gardiner Dalley, and Dennis Weder

Wilde, James D., and Charmaine Thompson

Wilshusen, Richard H.

Woodbury, Richard B.